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ABSTRACT
MiRNAs (microRNAs) are small non-coding RNAs involved in mammalian gene expression of cellular processes including differentiation,

apoptosis and cancer development. Both specific miRNAs and mRNAs have been identified during monocytic differentiation, but their

interactions have not been fully characterized. Here we report that by genome-wide microarray analysis for U937 monocytic differentiation

induced by TPA, a large number of miRNAs and mRNAs were differentially expressed, and by bioinformatics analysis could demonstrate that

their functional pathway patterns overlap strongly. While expected negative correlation between the expression levels of miRNAs and their

target mRNAs was seen, several positive correlations between miRNAs and host mRNAs were also observed, such as C13orf25/miR17,MCM7/

miR93, and MGC14376/miR22. These microarray data were verified by quantitative RT-PCR, and the TPA-induced differentiation of U937

cells was confirmed by flow cytometric analysis. Our study suggests an intrinsic correlation between miRNAs and mRNAs underlying their

interactions which would provide new insights for defining the mechanisms occurring during monocytic differentiation. J. Cell. Biochem.

112: 2443–2453, 2011. � 2011 Wiley-Liss, Inc.
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S ome noncoding RNA molecules (�22nt long), called micro-

RNA (miRNAs), were first discovered in Caenorhabditis

elegans by two research groups in the early 1990s [Lee et al.,

1993; Wightman et al., 1993]. MiRNAs play an important role in the

regulation of gene expression by binding complementary sequences

in target mRNAs and thus causing their selective degradation, or

selectively inhibiting the translation of target mRNAs [He and

Hannon, 2004]. Many studies reported that miRNAs interact in a

combinational fashion with genes in complex biological processes,

such as cell proliferation and cell differentiation [Cui et al., 2006].

The biogenesis of miRNA is not fully clarified, and in the recent

years, it has been estimated that miRNAs that reside in intronic or

exonic regions of other genes may be the dominating class, called

‘‘intragenic miRNAs.’’ It is likely that intragenic miRNAs are

processed from the same primary transcript as host genes and thus,

their expression levels are supposed to be coordinated with the host

gene mRNA [Hinske et al., 2010]. Given these properties of miRNAs

in gene expression, further investigating on the correlation between

expression level of miRNAs and mRNAs could reveal a tight post-

transcriptional regulatory network at both mRNA and protein level.

Bone marrow progenitors developed into monocytes proceeding

through monoblast and promonocyte stages, and monocytes

undergo further differentiation to become mature macrophages,

which play a crucial role in host defense to pathogens, wound

healing, and various types of chronic inflammation [Gordon and

Taylor, 2005]. The U937 cell line originated from a human histolytic

lymphoma, possessing immature promonocytic characteristics, is

believed to retain the capacity to differentiate into monocyte/

macrophage by various inducers such as TPA (12-O-tetradecanoyl-

phorbol-13-acetate), VD3 (1, 25-dihydroxyvitamin D3), retinoic

acids, DMSO and IFN-g. Since the TPA-induced differentiation of

U937 cells arrests cell growth in the G0/G1 phase of the cell cycle

and presents functional differentiation markers as well as specific

cell morphology, these cells are well accepted as an experimental
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model for exploring the mechanisms of monocytic differentiation

[Harris and Ralph, 1985; Kang et al., 2002].

In the present study, we use microarray-based approach to profile

the mRNA transcriptional changes, as well as changes in the miRNA

expression patterns during TPA-induced differentiation of U937

cells. Integrating microarray data and bioinformatics database, the

correlations between expression of miRNAs and target mRNAs, as

well as intronic miRNAs and host mRNAs, were characterized in the

context of monocytic differentiation.

MATERIALS AND METHODS

CELL CULTURE AND ASSESSMENT OF MONOCYTIC

DIFFERENTIATION

U937 cells were maintained in RPMI1640 with 10% fetal bovine

serum, 100U/ml penicillin, 100mg/ml streptomycin and 2mM

glutamine. Differentiation of U937 cells was induced by adding TPA

(Sigma-Aldrich, St. Louis, MO) to a final concentration of 30 nM to

the culture media and incubating the cells for 48 h [Kang et al.,

2002]. Untreated U937 cells were used as control. Cell morphologies

were examined by light microscopy after Wright-Giemsa staining

[Yazdanparast et al., 2006].

The differentiation marker CD11b was assessed as previously

described [Yamamoto et al., 2009]. Briefly, approximately 5� 105

cells were collected by centrifugation, and re-suspended in 20ml

CD11b-FITC working solution (eBioscience, San Diego). Following

incubation for 30min in the dark, the cells were washed twice with

ice-cold PBS and analyzed by flow cytometry. For each sample,

isotype antibody control was used to determine non-specific

staining.

miRNA MICROARRAY ANALYSIS

For miRNA microarray analysis, the total RNA was extracted from

cells using the Trizol reagent (Invitrogen, Carlsbad, CA). Microarray

analysis was performed using CapitalBio Mammalian miRNA array

V3.0 (consisting of 509 probes in triplicate), and the experimental

procedures were performed as previously described [Guo et al.,

2008; Li et al., 2009]. Briefly, the low-molecular-weight RNA was

isolated by precipitation with 13% (v/v) PEG6000 and 1.6M NaCl.

4mg of low-molecular-weight RNA was labeled with 500 ng Cy3 (or

Cy5) (Dharmacon, Lafayette, CO) with 2 units of T4 RNA ligase (NEB,

Ipswich, MA). The labeling reaction was performed at 48C for 2 h.

Labeled RNA was precipitated with 0.3M sodium acetate,

2.5 volumes ethanol, and re-suspended in 15ml hybridization

solution containing 3� SSC, 0.2% SDS, and 15% formamide.

Hybridization was performed at 428C overnight. After washing and

spin-drying, slides were scanned with LuxScan 10K-A laser

confocal scanner (CapitalBio, Beijing, China) and the analog signal

was transformed to a digital signal using LuxScan 3.0 software

(CapitalBio, Beijing, China). Raw data were normalized, and

the differentially expressed miRNAs were identified by Significance

Analysis of Microarrays (SAM, Stanford University, CA)

software [Tusher et al., 2001]. Three independent experiments were

performed, and for each test and control sample, two hybridizations

were performed by using a reversal fluorescent strategy. The original

data of miRNA microarray are available from the Gene Expression

Omnibus (http://www.ncbi.nlm.nih.gov/geo), and the accession

number is GSE26376.

mRNA MICROARRAY ANALYSIS

The same total RNA samples used for miRNA microarray analysis

were also used for mRNA microarray analysis. A human

oligonucleotide microarray (CapitalBio, Beijing, China) containing

21, 3295-amino-modified 70-mer probes was used for analysis.

DNase-treated total RNA (5mg) was prepared to produce fluorescent

dye (Cy5 or Cy3) labeled cDNAs with Eberwine’s linear RNA

amplification method. Subsequently, the labeled cDNAs were

purified and re-suspended in 80ml hybridization solution contain-

ing 3� SSC, 0.2% SDS, 25% formamide and 5�Denhart’s. DNAwas

denatured at 958C for 3min before loading on the microarray, and

then the microarray was hybridized at 428C overnight. Finally,

microarray was washed and scanned as mentioned above. The

operation of microarray analysis followed the CapitalBio standard

procedures, and the details were described in the previously

published protocols [Yu et al., 2008]. The original data of mRNA

microarray are available from the Gene Expression Omnibus (http://

www.ncbi.nlm.nih.gov/geo), and the accession number is

GSE26377.

QUANTITATIVE RT-PCR ANALYSIS OF miRNA

The primer design (Supplementary Table SI) and reverse tran-

scriptase reactions were performed according to the method of Chen

et al. [2005]. Briefly, reverse transcriptase reactions contained

100 ng total RNA, 50 nM stem-loop RT primer, 5�RT buffer

(Promega, Wisconsin), 0.25mM each of dNTPs (Takara, Japan),

200U/ml M-MLV (Promega, Wisconsin) and 40U/ml RNase inhibitor

(Promega, Wisconsin). Total 20ml reactions were incubated for

30min at 168C, 30min at 378C, 10min at 708C, and maintained at

48C.
PCR reaction was performed employing SuperGreen quantitative

PCR Kitjj (CapitalBio, Beijing, China), and the 20ml PCR system

contained 1ml RT product, 1� SuperGreen PCR Mix, 0.2mM

forward primer and universal reverse primer. U6 was used as an

internal control. At least three independent reactions were

performed for each miRNAs. The relative quantities of each miRNA

were calculated from the Ct (cycle threshold) values scaled to

internal control and corrected for efficiency of amplification

according to the formula Q.rel.¼ 2�DCt, where DCt¼ average Ct test

gene� average Ct internal control.

QUANTITATIVE RT-PCR ANALYSIS OF mRNA

For the reverse transcriptase reactions of mRNAs, 10mg total RNA

was incubated with 10U RNase-free DNase I (Promega, Wisconsin)

at 378C for 30min, and then purified with NucleoSpin RNA Clean-

up Kit (MACHEREY-NAGEL, Germany). Purified total RNA (2mg)

was reverse transcribed with 200U/ml M-MLV (Promega, Wiscon-

sin). Specific primers for quantification of mRNA were listed in

Supplementary Table SI. Quantitative RT-PCR reactions were

performed as described above, and ACTB was used as internal

control. Three independent reactions were done for each gene.
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KEGG PATHWAY ANALYSIS BASED ON MICROARRAY ANALYSIS

Potential targets of differentially expressed miRNAs were deter-

mined using the combination of two algorithms: TargetScan [Lewis

et al., 2003] and miRanda [John et al., 2004]. Genes previously

reported as targets for the differentially expressed miRNAs were

obtained from Argonaute database [Shahi et al., 2006]. MiRNA

targets from each database as well as differentially expressed

mRNAs were subjected to pathway exploration using Molecule

Annotation System (MAS) software (http://bioinfo.capitalbio.com/

mas/) [Sun et al., 2008] and KEGG databases [Kanehisa and Goto,

2000].

STATISTIC ANALYSIS

SAM identified genes with statistically changes in expression by

assimilating a set of gene-specific t-tests with a 5% false discovery

rate (FDR) threshold. Quantitative RT-PCR data were expressed as

means� standard error (SE), and the differences with P< 0.05 were

considered statistically significant using a two-sided unpaired

Student’ s t-test.

RESULTS

MONOCYTIC DIFFERENTIATION OF U937 CELLS INDUCED BY TPA

After treatment of TPA, most cells adhered to the plate, and exhibited

star-like or spindle-like morphologic changes under phase contrast

microscopy, while control cells still remained in suspension as discrete

cells. Cells were harvested and stained byWright-Giemsa, observation

by light microscope showed the obvious morphological feature

changes of mature monocytes/macrophages including cell spreading,

nuclear convolution, and disappearance of the nucleolus (Fig. 1A, B).

CD11b is a widely used marker for identification of mature

monocytes/macrophages [Yamamoto et al., 2009]. Flow cytometric

analysis showed that CD11b expression greatly increased in

differentiated cells compared to control cells (Fig. 1C). These results

Fig. 1. Identification of TPA-induced monocytic differentiation of U937 cells. After Wright–Giemsa staining, the stained cells were observed under light microscopy (scale bar

100mm): (A) U937 cells without TPA treatment; (B) U937 cells treated with TPA for 48 h. (C) Expression of CD11b in U937 cells with or without TPA was measured by FACS and

analyzed by FlowJo software. Results in Figure 1 were repeated for at least three times, and (A), (B), and (C) are results of a typical experiment.
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demonstrated that TPA induced U937 cells to differentiate to cells

with mature monocytic characteristics.

DIFFERENTIAL EXPRESSION OF miRNAs IN MONOCYTIC

DIFFERENTIATION

In order to investigate the changes in miRNA profiles during the

monocytic differentiation, an oligonucleotide microarray-based

miRNA detection platform was conducted. Differentially expressed

miRNA in differentiated cells were identified by SAM statistics, and

miRNAs filled with three criteria (fold change � 1.5 or � 0.65, q-

value � 5%, and SAM score > 2 or <�2) were considered as

significantly regulated [Tusher et al., 2001]. In our study, SAM

analysis generated a list of 44 miRNA differentially expressed

during monocytic differentiation, with 32 up-regulated and 12

down-regulated. Based on these differentially expressed miRNAs,

supervised hierarchical cluster generated a tree showing a high

degree of agreement among the triplicate experiments, indicating

the specificity of changes in miRNA expression and the reliability of

microarray analysis (Fig. 2A).

To further validate the microarray data, quantitative RT-PCR was

performed on 15 miRNAs using independent samples, and detailed

analysis of fold changes for these miRNAs showed a good

concordance (R2� 0.92) between the microarray and quantitative

RT-PCR data (Fig. 2B). Taken together, using microarray and

quantitative RT-PCR, a number of miRNAs were identified to be

significantly regulated during monocytic differentiation.

DIFFERENTIAL EXPRESSION OF mRNAs IN MONOCYTIC

DIFFERENTIATION

The mRNA expression changes in monocytic differentiation were

simultaneously analyzed by human oligonucleotide microarray

including approximately 22,000 gene transcripts, which allows a

survey of the genome for gene expression. To reduce the false

positive ratio in genome-wide oligonucleotide microarray platform,

a more stringent criterion of at least 2-fold changes was adopt to

select differentially expressed genes [Xiang et al., 2007]. Some 2522

genes (�10% of total genes examined) were thus found to be

significantly regulated, in which 1296 genes were up-regulated and

1226 genes were down-regulated (Supplementary File 1).

Microarray profiling of differentiated U937 cells revealed a

variety of regulated genes previously reported to involve in

macrophages, inflammation and innate immunity including

chemokines IL-1B and TNF, differentiation marker ITGAM, and

matrix metalloproteinase proteinMMP7 andMMP9. A summary of

these genes was listed in Table I. Interestingly, comparing our

microarray data with other studies showed genes related to

macrophage function such as CCL24, IL6, MMP9, and CD9, were

constantly up-regulated in different differentiation conditions,

while transcription factors like FOS, HES1, BCL6, and NFKB1 were

highly up-regulated only in the differentiation induced by TPA or

LPS activation (Table I). In addition, in the same differentiation

models of TPA-induced differentiation of U937, about 80% of

checked genes showed consistent expression patterns between our

microarray data and other microarray data from previously

published study [Baek et al., 2009], which indicated the specificity

of genetic regulation and the reliability of microarray data.

INTRINSIC CORRELATION BETWEEN EXPRESSION LEVELS OF

miRNAs AND TARGET mRNAs REVEALED BY BIOINFORMATICS

INTERPRETATION

Using TargetsScan and miRanda database, 583 differentially

expressed mRNAs were predicted as 44 miRNA targets in monocytic

differentiation (Fig. 3). To reduce the number of false positives, only

targets predicted by both programs were accepted. Meanwhile, a list

of the differentially expressed miRNAs andmRNAs was compared to

the known miRNA-target interactions reported in the Argonaute

database, a total of 183 differentially expressed mRNAs were listed

as targets of 31 miRNAs regulated in monocytic differentiation

(Fig. 3).

In most cases, the miRNAs function as negative regulators in gene

expression, thus negative correlations between miRNAs and target

mRNAs expression levels were scrutinized for these interactions

(Table II, and see Supplementary data Table SII for complete list),

eight negative correlations in which were confirmed by quantitative

RT-PCR, and shown in Figure 4A.

Further functional implications of the negative correlations

between miRNA and mRNA expression were also sought by

application of the MAS software and its accompanying

interaction database, from which canonical pathways associated

with differentially expressed genes can be determined. Fisher’s

exact test was used to identify significant enriched pathways

based on the incidence of identified differentially expressed

genes.

This analysis indicated 183 reported targets of differentially

expressed miRNAs involving in 96 pathways, among which 35 were

significantly enriched pathways (P-value< 0.001), includingMAPK

[Matsumoto et al., 2006], TGF-b [Shi and Simon, 2006], Toll-like

receptor signaling pathway [Krutzik et al., 2005], JAK/STAT

[Tanuma et al., 2000], and Wnt signaling pathways [Tickenbrock

et al., 2006], which have been previously reported to be closely

related with the function of cell differentiation (Table SIII).

According to KEGG terminology, 35 significant enriched pathways

were categorized into 11 functional categories (Fig. 5A). Likewise,

583 predicted targets of miRNAs differentially expressed in

monocytic differentiation participated in regulating 139 pathways

(Table SIV), in which 40 significantly enriched pathways (P-

value< 0.001) were found and grouped into 16 functional

categories (Fig. 5B). During monocytic differentiation, 804

differentially expressed mRNA involved in 163 pathways (Table

SV), Fisher’s exact test showed 71 of them were significantly

enriched (P-value< 0.001). Furthermore, these 71 significantly

enriched pathways were categorized into 24 functional categories

(Fig. 5C). As shown in Figure 5, a similarity can be observed between

the functional patterns of predicted miRNA targets and differentially

expressed mRNA.

INTRINSIC CORRELATION BETWEEN EXPRESSION LEVELS OF

miRNAs AND HOST mRNAs IN MONOCYTIC DIFFERENTIATION

According to their genomic location, the miRNAs can be

divided into intergenic miRNAs and intragenic (intronic/extronic)

miRNAs [Hinske et al., 2010]. Using the National Center for

Biotechnology Information (NCBI) mRNA reference sequences

and miRBase release 16 (September 2010), of 44 differentially
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Fig. 2. Identification of differentially expressed miRNAs during monocytic differentiation. A: A tree generated by Cluster 3.0 software on the basis of differentially expressed

miRNAs detected by microarray analysis, and red indicated expression upregulation and green indicated expression downregulation; column showed miRNAs list, expression

ratio indicated the fold changes of expression of miRNAs in differentiated cells compared to the control cells, and q-value indicated the lowest positive False Discovery Rate at

which the gene was called significant; row showed three independent biological replications, labeled as T1, T2, and T3. B: Pearson correlation scattered plots of comparisons of

ratios measured by microarray and quantitative RT-PCR in fifteen miRNAs; R, the Pearson linear correlation coefficient value.
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expressed miRNAs identified in our study, 25 miRNAs can be

located within corresponding host mRNA transcripts. Among

them, 13 intragenic miRNAs have the same orientation with

their host mRNAs, and 12 intragenic miRNAs reside in antisense

orientation to their corresponding host mRNAs (Supplementary

Table SVI). Previous studies indicated intragenic miRNAs might

be transcribed in the sense orientation as part of the pre-

mRNA gene structure and further released and processed to mature

miRNA molecules following splicing events, while miRNAs in

antisense orientation to their annotated host mRNAs might possess

their own independent transcription units inside the host mRNAs

[Hinske et al., 2010; Li et al., 2007].

Examining correlations of the expression between 25 intragenic

miRNAs and their corresponding host genes, eight miRNAs were

found to be positively correlated with their host genes in expression

level (Table III). In addition, few negative correlations between

TABLE I. List of Representative Regulated Genes (Sorted by TPA Treatment).

Gene names Gene symbols

Gene modulation

TPAa LPSb MFc

Cytokines and Chemokines
Tumor necrosis factor (TNF superfamily, member 2) TNF 13.5 (40.2) " "
Interleukin 1, alpha IL1A 25.2 " "
Interleukin 1, beta IL1B 27.8 (13.3) " "
Chemokine (C-C motif) ligand 20 CCL20 38.3 " —
Interleukin 6 (interferon, beta 2) IL6 12.6 " "
Chemokine (C-C motif) ligand 1 CCL1 33.4 " "
Chemokine (C-X-C motif) ligand 2 CXCL2 6.6 " "
Chemokine (C-C motif) ligand 24 CCL24 40.0 " "
Chemokine (C-C motif) ligand 5 CCL5 3.8 " —

Surface molecules
CD83 molecule CD83 9.8 " —
CD53 molecule CD53 2.9 " "
Integrin, alpha M ITGAM 2.5 " "
CD58 molecule CD84 3.0 " "
CD9 molecule CD9 2.0 (4.5) " "

Signaling and effector molecules
Endothelin 1 EDN1 24.7 " —
Matrix metallopeptidase 7 (matrilysin, uterine) MMP7 102.0 (40.2) " "
Serum/glucocorticoid regulated kinase 1 SGK 12.1 " —
Cyclin-dependent kinase inhibitor 1A (p21, Cip1) CDKN1A 11.5 (13.5) " #
Matrix metallopeptidase 9 MMP9 9.2 " "
Myeloid differentiation primary response gene (88) MYD88 2.1 " —
Complement component C3 5.6 " "
Cyclin D1 CCND1 5.8 (2.0) " "
Transforming growth factor, beta-induced, 68 kDa TGFBI 5.8 " —
Cyclin A1 CCNA1 0.1 — —
Coiled-coil domain containing 6 CCDC6 0.3 (0.2) — #
Cyclin A2 CCNA2 0.1 (0.1) # —
Cell division cycle 25 homolog A (S. pombe) CDC25A 0.3 (0.1) # —
Cyclin-dependent kinase CDK4 0.2 # "
Tumor necrosis factor (ligand) superfamily, member 13b TNFSF13B 0.1 # #

Transcription factors/Histone modifiers
Early growth response 2 (Krox-20 homolog, Drosophila) EGR2 31.5 " "
B-cell CLL/lymphoma 6 BCL6 8.3 " —
Myocyte enhancer factor 2D MEF2D 2.2 " #
Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 NFKB1 2.3 (14.4) " —
Myocyte enhancer factor 2A MEF2A 5.5 " "
Sprouty homolog 2 (Drosophila) SPRY2 5.7 " "
v-fos FBJ murine osteosarcoma viral oncogene homolog FOS 3.1 " #
Hairy and enhancer of split 1, (Drosophila) HES1 2.1 " —
MAX dimerization protein 1 MAD 3.6 " "
Activating transcription factor 5 ATF5 4.4 " "
Myocyte enhancer factor 2C MEF2C 2.7 " "
Kruppel-like factor 13 KLF13 2.2 " —
Nuclear receptor subfamily 4, group A, member 3 NR4A3 41.1 " #
Histone deacetylase 7 HDAC7A 2.3 — —
BRCA1 interacting protein C-terminal helicase 1 BACH1 2.8 — #
Activating transcription factor 3 ATF3 3.2 — "
CCAAT/enhancer binding protein (C/EBP), beta CEBPB 5.5 — #
Cytochrome b-245, beta polypeptide CYBB 0.3 # "
Hematopoietically expressed homeobox HHEX 0.4 # #
Forkhead box M1 FOXM1 0.2 # —
Histone deacetylase 2 HDAC2 0.4 (0.4) # "
Homeobox A5 HOXA5 0.4 # #
v-myb myeloblastosis viral oncogene homolog (avian) MYB 0.05 # —

aThis column showed mean fold changes of regulated genes in differentiation of U937 induced by TPA; bracketed numbers indicated mean fold changes obtained by
quantitative RT-PCR (P< 0.05).
bResults shown were for subsequent activation of TPA differentiated U937cells by LPS, obtained from the previous published studies [Baek et al., 2009]; the arrows
indicated the direction of gene expression changes, and short strings indicated no data or no significant changes of gene expression.
cResults shown were for adherence-induced differentiation of primary human monocytes, which were obtained from GEO database (GES8286) [Liu et al., 2008].
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expression of intragenic miRNAs and host genes were also observed

(Table III). The expression levels of several host gene/intragenic

miRNA pairs (MGC14376/miR22, C13orf25/miR17 cluster, and

MCM7/miR93) were further validated by quantitative RT-PCR,

supporting the positive correlation between them during monocytic

differentiation (Fig. 4B).

DISCUSSION

This study included: (1) profiling the specific expression patterns of

both miRNAs and mRNAs during monocytic differentiation

simultaneously; (2) scrutinizing the negative correlations between

the expression levels of miRNAs and targets mRNAs and revealing

Fig. 3. The number of target genes used for analysis of correlations between miRNA and mRNA. Three data sources of miRNA targets were used, including TargetScan,

miRanda, and Argonaute. The intersection of target database and microarray data was the number of genes used for further analysis.

TABLE II. Selected Negatively Correlated miRNAs and mRNAs

miRNAs Target symbols Pathways Identified by Target modulation

Upregulated miRNAs
has-miR-638 GAMT Glycine, serine and threonine metabolism Targetscan and miRanda 0.3
has-miR-508 INHBB Cytokine-cytokine receptor interaction Targetscan and miRanda 0.4
has-miR-663 PPP5C MAPK signaling pathway Targetscan and miRanda 0.3
hsa-miR-22 GEMIN5 Argonaute 0.2
has-miR-584 DDB2 Pyrimidine metabolism Targetscan and miRanda 0.4
hsa-miR-146a CCDC6 Thyroid cancer Argonaute 0.3
hsa-miR-146b BRCA1 Ubiquitin mediated proteolysis Targetscan and miRanda 0.3
hsa-miR-487b CDK4 Cell cycle Argonaute 0.2
has-miR-888 RBL1 Cell cycle Targetscan and miRanda 0.3
hsa-miR-21 PARP1 Base excision repair Argonaute 0.3
hsa-miR-23a/b MYC MAPK signaling pathway Argonaute 0.2
hsa-miR-27a/b PCNA DNA polymerase; Argonaute 0.3
has-miR-221 STMN1 MAPK signaling pathway Argonaute 0.3
has-miR-509 PGM1 Glycolysis/Gluconeogenesis Targetscan and miRanda 0.3
has-miR-424 CHEK1 Cell cycle Targetscan and miRanda 0.3
has-miR-28 MAD2L1 Cell cycle Targetscan and miRanda 0.3
has-miR-193 P2RX5 Calcium signaling pathway Targetscan and miRanda 0.4
hsa-miR-29a/b HMGB1 Base excision repair Argonaute 0.4
hsa-miR-24 E2F2 Cell cycle Argonaute 0.1
has-miR-381 CCNA2 Cell cycle Targetscan and miRanda 0.2
hsa-miR-218 MYC MAPK signaling pathway Argonaute 0.2
has-miR-410 CTNNBIP1 Wnt signaling pathway Targetscan and miRanda 0.4
hsa-miR-26a EZH2 Argonaute 0.5
hsa-miR-192 SIP1 Argonaute 0.3
hsa-miR-125b EIF4EBP1 Wnt signaling pathway Argonaute 0.2

Downregulated miRNAs
hsa-miR-17/18a/92a-1 CCND1 Cell cycle Argonaute 5.8
hsa-miR-106a/18b/19b/92a-2 LIF Cytokine-cytokine receptor interaction Argonaute 8.8
has-miR-662 DUSP5 MAPK signaling pathway Targetscan and miRanda 11.9
hsa-miR-98 TNF MAPK signaling pathway Argonaute 13.5
hsa-miR-93 CDKN1A ErbB signaling pathway Argonaute 11.6
hsa-miR-32 CDKN2A Cell cycle Argonaute 2.8
has-miR-197 ACVR1 Cytokine-cytokine receptor interaction Targetscan and miRanda 4.8
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the functional interactions underlying negative correlations; (3)

examining intrinsic correlations between the expression levels of

intragenic miRNAs and host gene mRNAs in the context of

monocytic differentiation.

The roles of miRNAs in gene expression received more and more

attention, with the extensive applications of expression profiling

analysis on miRNAs, systematic investigation on the correlations

between miRNAs and target mRNAs using expression data could

give us more information on the miRNA regulation [Huang et al.,

2007]. For example, joint genome-wide profiling of miRNA and

mRNA expression revealed pivotal functions of miRNAs in brain

disease [Nunez-Iglesias et al., 2010]. MiRNAs-mRNAs interactions

in NCI-60, a panel of 60 human cancer lines from several distinct

tissues, were analyzed by computing the paired correlations based

on the expression profiles of miRNA and mRNA [Wang and Li,

2009]. These studies focused on the negative correlations between

expression of miRNA and mRNA, yet, positive correlations between

host mRNAs and intragenic miRNAs have also been revealed by

microarray analysis [Baskerville and Bartel, 2005]. Since the

expression profile of miRNAs is specific in different tissues or

under different physiological conditions, the correlations between

miRNAs and mRNAs could vary under different biological

circumstances. This is a study that also used expression profiles

of miRNA and mRNA during monocytic differentiation to explore

the correlations between miRNAs and mRNA expression, either

negative or positive.

During monocytic differentiation, the expression levels of

numerous miRNAs were regulated (Fig. 2), including miR-21,

miR-146a, miR-146b, miR-221, miR-222, and miR-424 as pre-

viously reported [Forrest et al., 2010; Kasashima et al., 2004;

Taganov et al., 2006]. Moreover, some miRNAs not reported

previously to be correlated with monocytic differentiation were also

identified, and these newly identified miRNAs may participate in

specific miRNA-target interactions which could be informative for

potential new functions involved in monocytic differentiation.

Strategies for high-throughput miRNA target validation are still

limited; therefore, target prediction algorithms are employed to

assess large-scale miRNA-target interactions [Huang et al., 2007]. In

this study, the data obtained from two popular algorithms

(TargetScan and miRanda) were used to overcome individual biases

caused by one specific method, because different target prediction

algorithms are calculated from different types of information about

miRNA targets and make different predictions. Furthermore, with

the exponential growth of experimental knowledge about miRNA

targets, the Argonaute database is also informative for exploring

miRNA-target interactions underling complex biological condi-

tions. Using Argonaute database, a lot of previously known

miRNA-target interactions were also found during monocytic

Fig. 4. Representative correlations between miRNA and mRNA revealed by quantitative RT-PCR. A: Quantitative RT-PCR validation with eight miRNAs and their targets

predicted by TargetScans or Argonaute. Results shown were the fold changes of expression of these transcripts in differentiated cells compared to the control cells. The

expression of ACTB was used as a baseline to calculate fold changes. B: Quantitative RT-PCR confirmation of five positive correlations between intragenic miRNAs and their host

genes uncovered by microarray data, and relative quantities were calibrated to U6. Error bars represented SE of the expression ratios from triplicate biological replicates;
	P< 0.05, 		P< 0.01.
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differentiation (Table II and Table SII), for example, CCDC6 and

CCNA2 as targets of miR-146a [Hsieh et al., 2010; Jazdzewski et al.,

2008], CDC25A, E2F2, and PARP1 as targets of miR-21 [Bhat-

Nakshatri et al., 2009; Seike et al., 2009; Wang et al., 2009], and

EZH2 as target of miR-26a [Wong and Tellam, 2008]. It’ s worth

noting that most miRNA targets identified were cell cycle control

genes, epigenetic modifiers, and DNA replication components,

which are overexpressed in pro-monocyte progenitors and involve

in retaining proliferation of pro-monocyte progenitors [Asada et al.,

1999; Iglesias-Ara et al., 2010]. As the expressions of these genes

were inhibited by miRNAs, the proliferative potential could be

repressed, as well as growth arrest involving in the differentiation

could be induced. Thus, negative regulation of miRNAs is pivotal in

controlling monocytic differentiation.

Importantly, negative correlations between expression levels of

miRNAs and target mRNAs could shape functional interactions, for

a given miRNA expression upreglated while corresponding to

decreased expression of its targets related to certain pathways

downregulated [Pandey et al., 2008]. In the present study, targets of

regulated miRNAs were found to associate with specific functional

pathways, which could be categorized into several functional

categories; likewise, the pathways related with differential

expressed mRNAs were also grouped into functional categories.

Comparison of these functional categories from regulated miRNA

and regulated mRNA emphasized our initial hypothesis that miRNA

display targeting patterns appearing not only to influence targets’

expression but also their functional environment, because their

functional categories were found to be mainly overlapping in our

study (Fig. 5). Among these functional categories, signal transduc-

tion, immune system, cell growth and death, and cancer took the

dominant proportion of total categories; these results could help us

better understand the mechanisms of monocytic differentiation.

Research on the correlation between intragenic miRNA and host

mRNAs revealed different relations between miRNA and mRNA. In

the past few years, a few studies reported the significant correlation

between miRNA and host genes expression by comparing the

expression profiles of miRNAs and their host genes, and indicated

that intronic miRNAs and their host genes were regulated

dependently [Baskerville and Bartel, 2005; Lionetti et al., 2009].

In the present study, several positive correlations between intragenic

miRNA and host genes expression were observed during monocytic

differentiation (Table III and Fig. 4B). Nevertheless, in seventeen out

of twenty-five intragenic miRNAs indentified here were not

coordinated with their corresponding host mRNAs in expression

levels; besides, half of miRNAs residing in the same orientation with

their host mRNA were still not co-regulated with their host mRNAs.

Given this, a hypothesis was raised that positive correlation between

intragenic miRNAs and host mRNAs expression may not be

widespread phenomenon in cells.

In addition, our data also implied that even miRNAs in an

antisense orientation to its host genes (e.g., miR-22 and miR-93)

could be co-regulated with its host genes, while miRNAs in a sense

orientation to its host genes might be regulated independently.

Combing with previously observations, our findings support the

idea that multiple regulation events regulate miRNA levels other

than co-transcription from the host mRNA promoter. Even if

intragenic miRNAs could be co-transcribed with the host mRNA, the

cleavage of post-transcriptional processing of primary miRNAs to

mature miRNAsmay lead to diverse miRNA expression, compared to

the host mRNA expression [Sikand et al., 2009]. Moreover, a recent

Fig. 5. Functional pattern analysis of mRNAs and miRNAs regulated in

monocytic differentiation. The pie-charts shown were functional categories

associated with validated miRNA targets obtained from Argonaute (A), pre-

dicted miRNA targets obtained from the combination of TargetScan and

miRanda (B), and differentially expressed mRNAs identified by microarray

(C); each pie indicated the proportion of the corresponding functional

category.
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study indicated transcription of roughly 30% of intragenic miRNAs

may be initiated independently, and approximately 20% of

intragenic miRNAs were also predicted to target their host mRNA

transcripts [Hinske et al., 2010]. In this case, potential negative

feedback loops between intragenic miRNA, host genes and miRNA

targets may exist during cellular processes.

Most of host genes are protein coding genes, and have specific

functions in cellular processes (Table SVI). In this study, miR-93 was

found to be coexpressed with host gene MCM7, which has been

indicated to involve in regulating cell proliferation [Blow and

Hodgson, 2002], furthermore miR-93 has also been found to

contribute to cell proliferation by regulating cell cycle controlling

genes like E2F1, CDKN1. So the coexpression of intragenic miRNAs

and host genes in certain physiological condition may imply the

closely related functions between them. In addition, a few host genes

have no definite functions, which are non-coding genes or even

novel processed transcripts, yet their specific expression patterns

with respect to intragenic miRNAs may add a new way to identify

biomarkers, because miRNAs expression has been reported to be

associated with tissue specific [Wienholds et al., 2005]. During

monocytic differentiation the significant expression changes of

C13orf25 and MGC14376 coordinated with corresponding intra-

genic miRNAs, indicating these genes could be a potential biomarker

in maturation of monocytes. Until now, the funcional aspects of

intragenic miRNAs are still largely unknown, the correlation

between expressions of intragenic miRNA and host mRNA studied

here is a starting point for an in-depth analysis of intragenic miRNA

under monocytic differentiation.

In conclusion, our results suggested that microarray expression

profiles could be used to assist the identification of intrinsic

correlation between miRNAs and mRNAs. Examining correlations

between miRNA and mRNA expression levels provided a multi-

tiered approach for studying the gene regulations underlying

complex biological process.
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